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ON THE HYPERBOLIC VARIATION OF ELASTIC
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Abstract-An exact formulation is presented for the governing dual integral equations representing the mixed
boundary-value problem of the static stress distribution under a long rigid rectangular body lying on the free
surface of a non-homogeneous stratum. The shear modulus of the stratum increases in the depth direction y
from a value Go at the surface according to the hyperbolic variation.

G(y)= Goh
h -y

It, therefore, simulates a practical soil, of arbitrary Poisson's ratio, which smoothly merges into a rigid bed at
a depth h below the surface. The work shows that the problem is governed by both kinds of exponential
integral function and that the elect of surface elastic properties is dominant in the solution of the governing
equations. The limiting case of a homogeneous half-space is easily recovered from the general formulation as
h tends to infinity.

l. INTRODUCTION
Attempts have been made recently to break through the difficulties of analysing the behaviour of
practical elastic media subjected to surface loading by removing the usual assumption of a
homogeneous continuum. Smooth inhomogeneity due to a linearly increasing modulus. of
elasticity with depth was first introduced by Gibson [1J for a half-space and by Gibson et ai, [2J for
a stratum.

Except in the torsional mode of vibration which is independent of Poisson's ratio, Awojobi[3J
or the half-space problem, Awojobi and Gibson[4}, the analytical details in the case of smooth
inhomogeneity have constrained the authors to assume that the medium is incompressible. The
stratum problem for a compressible medium with linearly increasing shear modulus is, therefore,
yet to be considered. However, a practical variation of modulus with depth which does not
require the assumption of an incompressible medium would throw some light on the hypotheses
that the surface modulus is the dominant parameter for problems of any non-homogeneous
medium in which lateral variation of elastic properties is negligible. This theory has been
established by the author in recent works dealing with the linearly increasing modulus media.

The present investigation is concerned with the static stress and displacement fields in a
non-homogeneous stratum of arbitrary Poisson's ratio in which the shear modulus varies
according to the hyperbolic law

G(y)::;;;: Goh
h-y

which shows that the modulus increases from Go at the surface to an infinite value at a depth h.
This simulates in practice a stratum that merges smoothly into a rigid bed at its base and reduces
to a homogeneous elastic half-space of constant modulus Go when h becomes an infinitely large
positive constant. The primary interest is to find out the extent of the dominance of surface shear
modulus in such a non-homogeneous stratum.

2. GOVERNING DIFFERENTIAL EQUATIONS

We consider the plane strain problem in which the free surface of the stratum is loaded by a
long rigid rectangular strip of semi-width b. Using Cartesian coordinates with axes x, y and z
directed laterally, depth-wise and along the longitudinal axis of the strip respectively, we find that
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the elastic equations for the case in which shear modulus varies along y direction alone are:

aE dG
(A +G) ax +GV2u + 'YXYdY = 0

(A +G) aE +GV2v +2E dG +EdA = 0
ay y dy dy

(1)

(2)

where u and v are the components of displacement in the x and y directions, G is the shear
modulus, A is Lame's constant and we record the following relations for dilatation, shear strain
and the component of strain in the y-direction respectively.

E = au + av
ax ay
au av

'YXY =ay + ax

av
E =­

y ay

(3)

If we subtract the partial derivative of eqn (2) with respect to x from that of eqn (1) with respect
to y, we find that:

(4)

where we have introduced

in which J1 is Poisson's ratio and

_ G(y)
g(y) - G'(y)

Equation (4) can be shown to reduce to

where

and in which we have used the results

V2u = aE _ 2aCtJ, Iax ay

a'Yxy _ 2 aEy= 2 aw.
ay ax ay

Similar to the above steps, we can show that

(5)

(6)

(7)

(8)

(9)

(10)
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in which the following results have been used

If we now assume a variation of shear modulus given by:

g' + I =0

we find, from eqn (6), that

G(y)= Goh
h-y

where Go and h are constants.
The governing eqns (7) and (10) then reduce to:

V2Wz = iJE [!:1.]
iJx g

V2E=O

3. GENERAL SOLUTION OF THE GOVERNING EQUATIONS
The introduction of complex Fourier transform reduces eqns (13) and (14) to

If we now introduce the subsidiary variable

Y=h-y

and the auxiliary function of Poisson's ratio

we find that eqns (15) and (16) become

the solution of which can be checked as

where

F(-pY) = e"VEi(-2pY)- e-"v log (PY)}
F(pY) = e-"VEi(2pY)- e"v log(pY)
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(10a)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)
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in which Ei(:t2p Y) are the exponential integral functions defined by:

Ei(-x) = -f~ e-
t

dt
x t

and

Ei(x) = -f'" e-
t

dt
-x t

the latter being interpreted as a Cauchy integral.
We record, from the differential properties of Ei(:tx)

d -x
-Ei(-x)=~
dx x

d eX
-Ei(x)=­
dx x

the following relations which are required presently:

d
dY [F(-pY)] =pH(-pY) }

d
dY [F(pY)] = -pH(pY)

where

H(-pY) = ePYEi(-2p Y) +e-PY log (pY)}

H(pY) = e-PYEi(2pY)+ePY log (pY)

and we note that (dF/dy)=-(dF/dY) by virtue of eqn (17).

4. STRESS AND DISPLACEMENT TRANSFORMS

By taking the transform of eqn (1) and using the relation

we can show that ·the transform of the vertical component of displacement is given by:

If we now substitute the solutions of i and tii.. we find ultimately that

2iV = iA{a{F(jY) YH(-pY)} - p2Ye- PY]

- iB I [ a{F~Y) + YH(pY)} +132Yepy]

-2A2[Y +~]e-PY+2B{ Y -~]epy

From the transform of the dilatation, we find

. _ _ dii
IpU = -E - dY

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)
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leading ultimately to

pi = iA{~2 e-PY(l +pY)- a~ Y F(-PY)]

+iB,[~2epY(l-py)+a~YF(PY)]

+PY[A2e-PY +B2ePY ].

For the shear stress transform,

_ 2Goh(. _+ _)
T"y =y IpV OJ.
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(32)

(33)

which results in

Txy = Goph [iA,{aH(-pY) +13 2e-PY}+ iB,{aH(pY) +132ePY}+2A2e-PY -2B2ePY ]. (34)

Similarly

- Goh [Q2- +2' -]
U y =y fI E IpU

which ultimately gives

uy = Goph[A,{aF(-p y)-13 2e-PY}+ B,{13 2ePY - aF(pY)} +2iA2e-pY +2iB2ePY ].

(35)

(36)

5. BOUNDARY CONDITIONS AND THE GOVERNING
DUAL INTEGRAL EQUATIONS

On the free surface given by y = 0 (or Y = h), we assume that the shear stress vanishes
throughout and the discontinuous direct stress U y will be represented by an unknown distribution
u(x) which vanishes outside the strip. At the base of the stratum y = h (or Y = 0), we can only
assume on physical grounds that the particles which have infinite shear modulus are rigidly
attached to the rigid bed. Thus, the four boundary conditions for evaluating the arbitrary functions
A" B" A 2 and B2 are:

iil y - o = 0

uly-o = o.

The mixed boundary conditions at the surface are:

(37)

(38)

(39)

(40)

(41)

which are required for the formulation of the governing dual integral equations.
We notice from the boundary condition in eqn (40) and the general expression for u in eqn

(32) that A, and B, are related in a simple manner according to:

We remark, as an aside here, that the dilatation is seen to be an odd function given by:

i =2B, sinh (p Y)

(42)

(43)

which, as expected, vanishes at the base of the stratum where the particles are incompressible
being of infinite modulus of rigidity.
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Putting now eqn (42) in the remaining boundary conditions and using the appropriate general
expressions, we find that A .. A 2 and B2 can now be determined from the simultaneous equations:

A I [a{F(-ph)+F(ph)}-f:J 2{e-Ph +ePh}]+2iA2e-ph +2iB2ePh = ~~h (44)

iA.[a{H(-ph)-H(ph)}+f:J2{e-Ph -ePh}]+2A2e-ph -2B2ePh =0 (45)

-iA 1aFo+A2+B2=0 (46)

where

Fo= limF(±pZ)
z-o

= 'Y +log e2 (47)

in which 'Y is Euler's constant.
We require the transform of surface vertical component of displacement for the formulation

in eqn (41). It can be shown, by virtue of the vanishing of shear stress at the surface according to
eqn (38), that

2- - u(x) + Q2 -phA _ Q2 phB
vop - Goph ~ e I ~ e I

so that, on using eqn (42), we find that

which shows that we require to evaluate only AI in eqns (44H46).
We find, after some algebra, that

A = _ 2u(x) cosh (Ph)
I phGoJi(p)

where

A(P) = 4[a{1- T(2ph)} + 13 2
]

(48)

(49)

(50)

(51)

in which the function T(2ph), first introduced by Gibson et al. [2] in the related problem of a
linearly non-homogeneous incompressible stratum, is defined as:

T(.,,) = ~ [Ei(.,,) +Ei(-.,,)] -log." - 'Y + 1 (52)

Substituting for A I in eqn (49) and using the mixed boundary conditions at the surface as given by
eqns (41), we find from the inversion theorem of complex Fourier transform that the governing
dual integral equations for the symmetrical problem of vertical loading of the strip are:

L~;W~os (PX) [1 - cosh
2

(Ph) Jdp = vo(O ~ x < b)
o 2p Goh 1+(1- ~2)[T(2Ph)-1]

L~ u(x) cos (px) dp = O(x > b)

(53)
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and, for the antisymmetrical problem of rocking about the longitudinal axis, the cosine term is
replaced by the sine and the right hand by xl/J where l/J is the angle of rock.

As a check on the correctness of eqns (53), we consider the limit as h tends to infinity when
we find that the half-space equations for a homogeneous medium of constant shear modulus Go
are recovered.

1 (~u(x)

(
1 ) Jo P cos (px) dp = vo(O ~ x < b)

2Go tJ 2 - 1

L~ u(x) cos (px) dp = O(X > b).

In deriving eqns (54), we have used the known asymptotic results:

limEi(±x)- ~±X [1 +Olxl-I
] I

Ix1-- -x
eX

lim cosh x - -2.x __

(54)

(55)

6. THE DOMINANCE OF SURFACE ELASTIC MODULUS FROM AN
APPROXIMATE ANALYSIS OF THE DUAL INTEGRAL EQUATIONS

In order to find a first approximation solution to the governing dual integral eqns (53) from
which, if necessary, a scheme of successive approximations similar to that in Awojobi and
Grootenhuis [5] could be developed, we need to consider first the behaviour of the integrand in
the first of eqns (53). The hypothesis that the surface elastic modulus is the dominant parameter
requires a comparison of eqns (53) and (54) throughout the range of integration.

We have plotted in Fig. 1 the governing functions:

and

where

1
12 =+­

K

(56)

(57)

(58)

for the extreme values of Poisson's ratio, fI =0 and ! and the intermediate value 1-
The behaviour of T(,,)-based on the known power series and asymptotic expansions of

E,(:t,,) given by Erdelyi et al. [6] for small and large values of ,,-has been discussed by Gibson
et al. [2] and their expressions have also been used here.

7. AN ASSESSMENT OF THE EFFECT OF STRATUM DEPTH ON
THE DOMINANCE OF SURFACE MODULUS

We can make some assessment of the contribution of stratum depth to the dominance of the
surface modulus as obtained from the first approximation consideration of the last section by
considering the second approximation in the scheme of successive approximations developed by
Awojobi and Grootenhuis[5].

For this purpose, we require to express the first of eqns (53) and (54) in their non-dimensional
forms using the variables
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so that the transform of the unknown stress distribution u(x) becomes F(",) and, to a second
approximation,

(59)

where F(",) is obtained from the non-dimensional form of eqns (53), the first of which is

f~ F(",) cos ('" i_)f(",) d", = 27TGoVo(0 0;;; i 0;;; 1)
o '" 2h

and F II(",) is obtained from the first of eqns (54)

in which

and the solution of F II(",) is known to be

(53a)

(54a)

(60)

(61)

(62)

It is readily shown from Awojobi and Grootenhuis[5] that Fd",) in eqn (59) is to be obtained
from the pair of equations

L~ F~Y) cos ( '" 2~) /3<",) d", = 27TGovo- L~ F'~71) cos ( 7l2~) !(",) d71 (00;;; i < 1)

f~ F 22(71) cos ('" i_) d71 = 0 (i > I).
o 2h

(63)

As shown in Awojobi and Grootenhuis[5], it is necessary to differentiate the first of eqns (63)
with respect to i in order to eliminate the singularity at the origin where the integrand on the right
becomes infinitely large.

However, it is to be noted that the insertion of eqn (62) into eqn (54a) makes the integral of
the latter to diverge because of this singularity at the origin. This difficulty is usually overcome by
a well-known technique of finding the shape of the deformed surface as a function of i by
subtracting the infinite constant

f~ FII(Y) cos ( "'_ ) d",.

o '" 2h

from the infinite displacement obtained by the insertion of eqn (62) in eqn (54a).
This is tantamount to attaching an origin to the medium and convecting with it in a manner

similar to the technique adopted by Awojobi and Gibson (Ref. [4] p. 291, eqn 5.12).
The dominant effect of stratum depth in comparison with surface shear modulus can now be



On the hyperbolic variation of elastic modulus in a non-homogeneous stratum

obtained from the right-hand side of the first of eqns (63) as

where the depth effect
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(64)

(65)

is to be compared with the surface modulus effect given by the first term, unity, inside the
brackets of eqn (64).

In order to evaluate (65) we split the interval of integration into three parts corresponding to

f( 1/ ) - It(1/ ) = - i (0 < 1/ < 1/ 1)

2 1
-U1/)=-;j+-I- (1/1<1/<1/2)

fJ2 - 1

1
- /J(1/) = -1- (1/ > 1/2)

fJ2 -1

where 1/1 is small and chosen such that

and 1/2 is large enough to make

In eqns (66) we have used the known results

and

(66)

(67)

(68)

Substituting for F I1(T/) in eqn (62) and using the power series and asymptotic expansions of the
Bessel Function as appropriate, we find ultimately that eqn (64) evaluates to

_ - i
2

[ 1 ( 1 )] ( 1 )I-EI1(x,h)-I--_ 1+- --1 +0-:
16h 2 3 fJ2 h3

and, relating fJ2 to Poisson's ratio v as in eqn (5), we find

(0 0;;; i < 1). (69)

-2 [ 1]I-EI1(i Ii)-I-~ 1----
, 16h 2 6(1- v)

(00;;; i < 1). (70)

Thus, in the worst case i = 1, the dominant effect of stratum depth compared with surface shear
modulus effect is shown in Table 1for the extreme and intermediate values of Poisson's ratio and
for depth ratios Ii = 1.5,2, 3,4, 5, 10. This effect has been calculated from the second term of eqn
(70) as a percentage of the first from which we conclude that surface shear modulus is by far the
dominant parameter since stratum depth contributes less than 1% for all depth ratios Ii > 2.

It is interesting to note that, using a numerical procedure for evaluating the integrals, the same
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Table I. Effect of striltum depth as a percentage of surface shear
modulus effect

>( 1.3 2 3 4 5 10

0 -2.32 -1.30 -0.58 -0.33 -0.21 -0.052
1/4 -2.16 -1.21 -0.54 -0.30 -0.19 -0.049
1/2 -1.85 -1.04 -0.46 -0.26 -0.17 -0.042

conclusion-that the effect of stratum depth is negligible for Ii > 2-is reached by Gibson et al.
[2] who considered the similar problem of a stratum with base fixed to a rigid bed but with shear
modulus varying linearly with depth.

It should be noted that ElI(i) is the contribution of F22(fI) to the vertical displacement Vo and,
therefore, represents the correct basis of comparison with Gibson et al. (2) who give the
numerical results for settlement of the rectangular strip on the assumption of uniform pressure
loading over the strip.

DISCUSSION AND CONCLUSIONS

The comparison of the governing functions in Fig. I between the exact formulation of the
hyperbolic variation case and the homogeneous elastic half-space solution proves that, as a first
approximation, the surface elastic properties of a non-homogeneous medium are the dominant
parameters. The major assumption is that the lateral variation of these elastic properties is
negligible. This is reasonable because the variation of soil properties over an area comparable
with the dimensions of the base of structures can be regarded small compared with depth
variation where the increase at a depth equal to the base average width can be as large as the
surface modulus itself.

2 ;:__---------....;;..v·...;0;....._

25

1/4

1/2

50

1/
Fig. 1. Comparison between exact governing function (full lines) and the approximation (broken lines) due to

surface elastic modulus only.

The dominance of surface modulus becomes more pronounced when the body is subjected to
any motion since the stiffening of the static stress distribution will be relaxed by virtue of
apparent increase in the inertia of the body due to motion of the surrounding soil. This
compensating effect has been discussed in a previous work, Awojobi [7].

Finally, the hyperbolic variation of shear modulus with depth is indeed very practical as it
shows a smooth transition of the sub-soil into a rigid bed. In this regard, it is superior to a linearly
increasing modulus for a stratum since this assumes the existence of a plane surface at some
depth h where there is a sharp change from non-rigid to infinitely rigid particles of soil.
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